On identities with multinomial coefficients for Fibonacci-Narayana sequence

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Andrews-gordon Identities and Q-multinomial Coefficients

We prove polynomial boson-fermion identities for the generating function of the number of partitions of n of the form n = ∑L−1 j=1 jfj, with f1 ≤ i−1, fL−1 ≤ i ′−1 and fj+fj+1 ≤ k. The bosonic side of the identities involves q-deformations of the coefficients of xa in the expansion of (1 + x + · · · + xk)L. A combinatorial interpretation for these q-multinomial coefficients is given using Durfe...

متن کامل

Compositions and Fibonacci Identities

We study formulas for Fibonacci numbers as sums over compositions. The Fibonacci number Fn+1 is the number of compositions of n with parts 1 and 2. Compositions with parts 1 and 2 form a free monoid under concatenation, and our formulas arise from free submonoids of this free monoid.

متن کامل

On Common Divisors of Multinomial Coefficients

Erdős and Szekeres showed in 1978 that for any four positive integers satisfying m1 + m2 = n1 +n2, the two binomial coefficients (m1 +m2)!/m1!m2! and (n1 +n2)!/n1!n2! have a common divisor > 1. The analogous statement for families of k k-nomial coefficients (k > 1) was conjectured in 1997 by David Wasserman. Erdős and Szekeres remark that if m1, m2, n1, n2 as above are all > 1, there is probabl...

متن کامل

Fibonacci Identities as Binomial Sums

To facilitate rapid numerical calculations of identities pertaining to Fibonacci numbers, we present each identity as a binomial sum. Mathematics Subject Classification: 05A10,11B39

متن کامل

Fibonacci Identities and Graph Colorings

We generalize both the Fibonacci and Lucas numbers to the context of graph colorings, and prove some identities involving these numbers. As a corollary we obtain new proofs of some known identities involving Fibonacci numbers such as Fr+s+t = Fr+1Fs+1Ft+1 + FrFsFt − Fr−1Fs−1Ft−1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Mathematicae et Informaticae

سال: 2018

ISSN: 1787-5021,1787-6117

DOI: 10.33039/ami.2018.09.001